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An analytical consideration is made for the simplest possible model in which 
the BSSE problem may appear. The results demonstrate that BSSE cannot 
be corrected in any consistent manner by readjusting the monomer  energies 
to the enlarged basis, because the energy effects caused by BSSE and by the 
true interactions are not additive. The way out is to correct BSSE, or prevent 
its appearance by an appropriate analysis and special treatment at the super- 
molecule level, permitting to keep the supermolecule problem consistent with 
the monomer  calculations, as provided by the "chemical Hamil tonian" 
approach recently introduced. 
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I. Introduction 

It is well known that "supermolecule"  calculations of  intermolecular interactions 
usually exhibit a spurious energy lowering called "basis set superposition error" 
(BSSE). Its source is that the intramolecular energy of the individual constituent 
molecules ( "monomers" )  becomes lower within the supermoleeule than that for 
the free molecules, because the basis orbitals of  the partner molecule also become 
(at least in part) available. Thus, BSSE represents an artefact arising from the 
incompleteness of  the monomer  basis sets. 

Usual schemes for correcting the results of  calculations for BSSE consist of  
readjusting the monomer energies to the enlarged basis. For this reason the 
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monomers are recalculated at every supermolecule geometry either in the whole 
supermolecule basis [1-3], or in the monomer  basis extended only with the virtual 
orbitals of  the intervening partner molecule [4]. It is much debated until now 
(e.g. [5-10]) which scheme is more appropriate.  However, we shall show here 
that neither of  them is really, satisfactory, because it is conceptually wrong to 
correct BSSE by manipulating the monomer  energies; instead, BSSE must be 
eliminated by an appropriate analysis and special treatment of the supermolecule 
problem. Therefore, we shall consider analytically the simplest possible model 
for which the BSSE problem may appear. 

2. The m o d e l  

Let us consider two molecules and take into account explicitly only one orbital 
on each: the occupied orbital (~1 on molecule A and the empty orbital ~2 on 
molecule B. For the sake of simplicity we consider explicitly only the one-electron 
part/~ of  the Hamiltonian and restrict ourselves to the cases in which all effects 
(both BSSE and true physical interactions) are weak enough to justify a perturba- 
tional treatment up to first order in wave function and second order in energy. 
We have to take into account the overlap s12=(~11~2) and perform the very 
simple calculations giving the orbital ~ = N ( ~ I + T I ~ 2 )  and the energy E = 
h11+ e (2). Here N is a normalization constant, ~ is the parameter  describing the 
delocalization (charge transfer), hij = (~i I/~ I ~j), and e <2) is the second order energy 
correction (h12, s12 and ~ are considered first order quantities,). 

Now we shall compare the results obtained for e (2) by specifying the Hamiltonian 
for two different cases. The first corresponds to the usual "counterpoise" methods 
of correcting BSSE: the nuclei of molecule A are considered only, whereas ~2 is 
a "ghost orbital". Thus in this case the Hamiltonian is that of molecule A: ~A = 
�89 UA (UA = - ~ A Z ~ / G  is the potential of molecule A). For this case we 
introduce the subscript "BSSE" because both ~ and e (2) differ from zero due 
only to the incompleteness of basis set on A, being unrelated to any physical 
interaction between the two molecules 1. We have 

hA1 - -  s2,hA1 ~2~ : (hA A 
~ B S S E  - -  s 1 2 h I 1 ) ~ q B S S E  . ( 1 )  n.SSE-- h~2-  h?l ' 

In the second case both BSSE and the actual intermolecular interactions are 
present; the Hamiltonian is that of the "supermolecule":  dA~=-�89 + UA+ UB = 
~A + UB (UB =--Y~B Z~/G). In this case the delocalization correction is 

hAB ~AB 
21 - -  $ 2 1 n l l  

T~AB = / l A B _ _  /~AB - -  Kr/BSSE q- T / U  B .  (2) 
~ 2 2  I )11  

B Here K = (hA-- hgl)/(hA2-- hA + U2~- U10, which may differ considerably from 
unity. The delocalization component  due to the true interaction (potential UB) 

1 ~ ---- 0 and E -= hA if ~1 is a true eigenfunction of ~A 
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is ~uB=-(U~l-S21U~I)/(hA?-hA1B). The second order energy correction 
becomes 

AB = -- h l l  SI2)T]AB 

(2~ ~ (3 )  = KEBSSE q- K (  U12 - UIB1St2) TIBSSE Jv (hA? -- hAAs,2)rluB. 

Equation (3) shows that the energy effects connected with the delocalization 
(charge transfer) caused by BSSE and by true intermolecular interactions, respec- 
tively, are not additive, while all the usual schemes of BSSE correction tacitly 
assume such an additivity. (Note that usual second order PT also exhibits a 
similar non-additivity, even for weak interactions, if they involve the same excited 
states; this is, in fact, the case in our model, too. For another example of 
non-additive delocalization effects see [ l 1].) The non-additive terms of the present 
simple model also enter all realistic calculations. We must conclude, therefore, 
that BSSE cannot be corrected consistently by readjusting the monomer energies. 
Consequently, one has to correct BSSE at the level ofsupermolecule calculations. 
The necessary theoretical tools are provided by the recent "chemical Hamil- 
tonian" approach [12, 13], offering the possibility to prevent the appearance of 
BSSE at the very beginning. Therefore all terms like r/sssE must be annihilated 
by readjusting the supermolecule treatment (the intermolecular one- and two- 
electron integrals). Excluding all the non-physical BSSE components, the interfer- 
ences (cross-terms) between BSSE and true interactions will also be avoided. 

In our model we can rewrite ~BSSE as 

1 
~BSSE-- h~2_hA1 (q~2]( 1 --I@l)(qVl])~Al@l) (4) 

indicating explicitly that BSSE originates from the non-zero projection of the 
function hAl ~1) on the orthogonal complement of Ir In the general case we 
must take into account all the basis orbitals [X~) of molecule A and introduce 
the operator of projection onto their subspace, ~A=~/x,I, EA]~/p~)(SA1)~v(X~,I 
(SA ~ is the inverse overlap matrix of the monomer). Using this operator, every 
function ,~A[X.) (/x C A) can be decomposed (cf. also [13, 14]) into "physical" 
and "non-physical" (basis incompleteness, BSSE) components: ~AIx~)------ 
~AdAIx.)+ (1 - ~A)~AI,)(.}. The first term is the component within the molecular 
basis; it is the only term present in the monomer calculation. The second term 
gives rise to BSSE, as it represents the projection of ~AIx~) onto the orthogonal 
complement of the molecular basis. This term is absent (neglected) in the monomer 
calculation, and must be excluded from the supermolecule calculation as well, 
to keep the latter consistent with the description of the monomers. Accordingly, 
in order to eliminate BSSE we have to readjust the intermolecular integrals in 
the supermolecule by conserving their physical (BSSE-free) components only. 
Thus in the supermolecule calculation one has to replace (X~]'~AIX.) (/X cA;  
u ~ A) with (g~ I ~A~A,)(,u,)= 2p,~'~A Sup(SA1)o~-(,)(~-[ ~A [.Y/z) and drop the BSSE com- 
ponent (X~](1-~A)dAX.).  Similarly, using Eq. (35b) of Ref. [12] we get the 
BSSE-free component of the two-electron integral [X~(1)X~(2)IX.(1)X~(2)] 
(/x, l/c A; Z ~ B and/or  cr~ B) as 57o....,~ A SaoS~.(SA1),~.(SA1).~,[.~.X~ , IX~X~], In 
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this manner BSSE can be completely eliminated at the supermolecule level: by 
performing a monomer calculation in the whole supermolecule basis with the 
readjusted integral values one recovers the energy of the free monomer molecule. 

Combining these modifications of integrals with a specific second quantized 
formalism, the total many-electron Hamiltonian can be decomposed [12] into 
effective intramolecular Hamiltonians, the operator of intermolecular interactions 
and that of BSSE. The expectation value of the latter gives the actual BSSE 
content of a usual supermolecule energy [12], whereas by dropping it from the 
Hamiltonian one can develop perturbation [14-16], SCF [17] etc. theories of 
intermolecular interactions intrinsically free of BSSE. 
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